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Abstract 16 

The performance of the Measurements of Pollution in the Troposphere (MOPITT) 17 

retrievals over urban regions has not been validated systematically, even though MOPITT 18 

observations are widely used to study CO over urban regions. Here we validate MOPITT products 19 

over urban regions using aircraft measurements from DISCOVER-AQ, SEAC4RS, ARIAs, A-20 

FORCE, and KORUS-AQ campaigns. Overall, MOPITT performs reasonably well over both 21 

urban and non-urban regions, overall biases for V8J and V8T vary from -0.7% to 0.0%, and from 22 

2.0% to 3.5%, respectively. The evaluation statistics of MOPITT V8J and V8T over non-urban 23 

regions are better than that over urban regions with smaller biases and higher correlation 24 

coefficients. We find that the performance of MOPITT V8J and V8T at high CO concentrations is 25 

not as good as that at low CO concentrations, although CO variability may tend to exaggerate 26 

retrieval biases in heavily-polluted scenes. We test the sensitivities of validation results to 27 
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assumptions and data filters applied during the comparisons of MOPITT retrievals and in-situ 28 

profiles. The results at the surface are insensitive to the model-based profile extension (required 29 

due to aircraft altitude limitations) whereas the results at levels with limited aircraft observations 30 

are more sensitive to the model-based profile extension. The validation results are insensitive to 31 

the allowed maximum time difference as criteria for co-location (12 hours, 6 hours, 3 hours, and 32 

1 hour), and are generally insensitive to the radius for co-location, except for the case where the 33 

radius is small (25 km) and hence the MOPITT retrievals included in the validation become very 34 

small. Daytime MOPITT products have overall smaller biases than nighttime MOPITT products 35 

when comparing both MOPITT daytime and nighttime retrievals to the daytime aircraft 36 

observations. However, it would be premature to draw conclusions on the performance of 37 

MOPITT nighttime retrievals without nighttime aircraft observations. Applying signal-to-noise 38 

ratio (SNR) filters does not necessarily improve the overall agreement between MOPITT retrievals 39 

and in-situ profiles, likely due to the reduced number of MOPITT retrievals that result for 40 

comparison. Comparisons of MOPITT retrievals and in-situ profiles over complex urban or 41 

polluted regimes are inherently challenging due to spatial and temporal variabilities of CO within 42 

MOPITT retrieval pixels (i.e., footprints). We demonstrate the some of that errors are due to CO 43 

representativeness with these sensitivity tests, but further quantification of validation errors due to 44 

CO variability within the MOPITT footprint will require future work.  45 

 46 

1. Introduction  47 

The Measurements of Pollution in the Troposphere (MOPITT) instrument onboard the 48 

NASA Terra satellite has been retrieving total column amounts and volume mixing ratio (VMR) 49 

profiles of carbon monoxide (CO) using both thermal-infrared (TIR) and near-infrared (NIR) 50 

measurements since March, 2000. Besides the TIR-only and NIR-only products, MOPITT also 51 

provides the multispectral TIR-NIR product, which has enhanced the sensitivity to near-surface 52 

CO (Deeter et al., 2011, 2013; Worden et al., 2010). Since the start of the mission, the MOPITT 53 

CO retrieval algorithm has been improved and enhanced continuously (Worden et al., 2014). For 54 

example, the Version 6 product improvements included the reduction of both a geolocation bias 55 

and a significant latitude-dependent retrieval bias in the upper troposphere (Deeter et al., 2014). In 56 

the Version 7 products, a new strategy for radiance-bias correction and an improved method for 57 
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calibrating MOPITT’s NIR radiances were included (Deeter et al., 2017). For the recently released 58 

MOPITT Version 8 products, enhancements include a new radiance bias correction method 59 

(Deeter et al., 2019). Meanwhile, the MOPITT products have been extensively evaluated and 60 

validated with in-situ measurements, though this has been done primarily over non-urban areas 61 

(Deeter et al., 2010, 2012, 2013, 2014, 2016, 2017, 2019; Emmons et al., 2004, 2007, 2009). For 62 

the past two decades, MOPITT CO products have been widely used for various applications 63 

including understanding atmospheric composition, evaluating atmospheric chemistry models, and 64 

constraining inverse analyses of CO emissions (e.g., Arellano et al., 2004, 2006, 2007; Chen et al., 65 

2009; Edwards et al., 2006; Emmons et al., 2010; Fortems-Cheiney et al., 2011; Gaubert et al., 66 

2016; Heald et al., 2004; Jiang et al., 2018; Kopacz et al., 2009, 2010; Kumar et al., 2012; 67 

Lamarque et al., 2012; Tang et al., 2018; Yurganov et al., 2005). 68 

MOPITT products are particularly useful for monitoring and analyzing air pollution over 69 

urban regions because of the enhanced retrieval sensitivity to near-surface CO and the long-term 70 

record (e.g., Clerbaux et al., 2008; Girach and Nair, 2014; Jiang et al., 2015, 2018; Kar et al., 2010; 71 

Tang et al., 2019; Worden et al., 2010; Li and Liu, 2011; He et al., 2013; Aliyu and Botai, 2018; 72 

Kanakidou et al., 2011). However, the performance of MOPITT retrievals over urban regions has 73 

not yet been validated systematically. Furthermore, in situ observations of CO profiles over urban 74 

areas are limited, especially in Asia. Indeed, along with the non-urban validation exercises 75 

mentioned above, development and validation of the MOPITT retrieval algorithm relies heavily 76 

on in-situ measurements over remote regions, such as measurements from the HIAPER Pole-to-77 

Pole Observations (HIPPO) and the Atmospheric Tomography Mission (ATom) campaigns (e.g., 78 

Deeter et al., 2013, 2014, 2017, 2019). Comparisons of MOPITT products to measurements with 79 

aircraft profiles during the Korea United States Air Quality (KORUS-AQ) campaign over South 80 

Korea have only recently been made in Deeter et al. (2019), but without explicitly analyzing 81 

MOPITT performance over urban regions. 82 

In this study, we validate MOPITT version 8 and 7 products over urban regions by 83 

comparing with aircraft profiles that are over urban regions (as well as non-urban regions) from 84 

campaigns including: Deriving Information on Surface conditions from Column and Vertically 85 

Resolved Observations Relevant to Air Quality (DISCOVER-AQ); the Studies of Emissions and 86 

Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS); the 87 
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Air Chemistry Research In Asia (ARIAs); the Aerosol Radiative Forcing in East Asia (A-FORCE); 88 

and KORUS-AQ. These campaigns are introduced in Section 2, along with a brief introduction of 89 

the MOPITT products and the validation methodology used. We present the validation results and 90 

discuss the impacts of key factors in the retrieval process on the retrieval results in Section 3. In 91 

Section 4, we discuss the sensitivities of results to the assumptions and data filters made for 92 

aircraft-satellite comparisons not only in this study, but also in previous evaluation studies of 93 

MOPITT and other satellite products. Section 5 gives the conclusions of the study. 94 

 95 

2. Data and methods 96 

2.1 MOPITT retrievals and products 97 

MOPITT is a nadir sounding satellite instrument flying on the NASA Terra satellite. It uses 98 

a gas filter correlation radiometer and measures at both the TIR band near 4.7 µm and the NIR 99 

band near 2.3 µm. These retrievals have a spatial resolution of about 22 km ´ 22 km with satellite 100 

overpass time at approximately 10:30 and 22:30 (local time). To determine a unique CO 101 

concentration profile from the MOPITT measured radiances, an optimal estimation-based retrieval 102 

algorithm, and a fast radiative transfer model are used (Deeter et al., 2003; Edwards et al., 1999). 103 

The retrieved state vector (𝑥"#$) for optimal estimation-based retrievals can be expressed as 104 

𝑥"#$ = 𝑥& + 𝑨 𝑥#")* − 𝑥& + 𝜖    (1) 105 

𝑥& and 𝑥#")* are the a priori state vector and the true state vector, respectively. A (which has a size 106 

of 10´10) is the retrieval averaging kernel matrix (AK) that represents the sensitivity of retrieved 107 

profiles to actual profiles and 𝜖 is the random error vector. Note that CO profiles are retrieved as 108 

log10(VMR) quantities. 109 

We focus on evaluating the recently released version 8, as well as the version 7, of the 110 

MOPITT TIR, NIR, and multispectral TIR-NIR products. The two versions of MOPITT products 111 

were introduced in detail in Deeter et al. (2017) and Deeter et al. (2019). 112 

2.2 Aircraft measurements used for comparisons 113 

Aircraft-sampled profiles of CO concentrations during the DISCOVER-AQ, SEAC4RS, 114 

ARIAs, A-FORCE, and KORUS-AQ campaigns are used for comparisons with MOPITT-115 
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retrieved profiles. DISCOVER-AQ, and SEAC4RS were conducted over the US, while ARIAs, A-116 

FORCE, and KORUS-AQ were conducted over East Asia (EA). Locations of the aircraft profiles 117 

from these campaigns are compared with the MODIS (Moderate Resolution Imaging 118 

Spectroradiometer) Terra+Aqua Land Cover Type Climate Modeling Grid Yearly Level 3 version 119 

6 0.05°´0.05° Global product (MCD12C1 v006) (Friedl and Sulla-Menashe, 2015) to determine 120 

if a profile is sampled over urban or non-urban regions. Specifically, for each aircraft profile, a 121 

0.5°´0.5° box centered over the location of the aircraft profile (average of latitude and longitude 122 

of aircraft observations in the profile) is selected. If the urban and built-up fraction in the box is 123 

larger than 10%, the profile is determined to be an urban profile. Overall, for each campaign, the 124 

averaged aircraft profile over urban regions has higher CO concentrations compared to that over 125 

non-urban regions, especially near the surface (see Figure S1). Profiles during ARIAs are the 126 

exception, as the averaged profile over non-urban regions has higher CO concentrations especially 127 

near the surface. We also notice for aircraft profiles sampled during KORUS-AQ, even though the 128 

averaged profile over urban regions has slightly higher CO concentration near the surface, the 129 

profiles over urban and non-urban are close. This is largely due to the fact that many of the non-130 

urban aircraft profiles are sampled over the Taehwa forest site, which is impacted by CO 131 

transported from the nearby Seoul urban region. Urban regions do not always have higher CO 132 

concentrations than non-urban regions. Therefore, because of the complexity of urban regions and 133 

their connection with non-urban regions nearby, we also provide analysis of validation at high CO 134 

concentrations regardless of landcover type.  135 

The campaigns and profiles are summarized in the Table 1 and Figure 1. During 136 

DISCOVER-AQ, SEAC4RS, and KORUS-AQ, CO concentrations were measured by the NASA 137 

Differential Absorption Carbon monOxide Measurement (DACOM), whereas during ARIAs and 138 

A-FORCE, CO concentrations were measured by different instruments, a Picarro G2401-I and 139 

Aero-Laser GmbH AL5002, respectively. Note that the primary goal of DISCOVER-AQ was to 140 

provide aircraft observation methodologies for satellite validation (e.g., Lamsal et al. (2014)). 141 

DISCOVER-AQ provides 121 profiles over four urban regions, making it particularly useful for 142 

the goal of this study. Because of this, our validation results are heavily driven by aircraft profiles 143 

from DISCOVER-AQ. Even though there are only two profiles sampled over urban regions, the 144 

A-FORCE campaign provides in total 45 profiles sampled over EA during Spring 2009, Winter 145 

2013, and Summer 2013. The seasonal and spatial coverage of the dataset makes it representative 146 
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of the region. The ARIAs campaign provides 19 profiles and three of these were sampled over 147 

Chinese urban regions. Only few previous studies have validated MOPITT products over China 148 

(e.g., Hedelius et al., 2019), so aircraft profiles from ARIAs have also been included in this study. 149 

2.3 Method for comparing aircraft measurements and MOPITT profiles 150 

 We generally follow the method that has been used in previous MOPITT evaluation and 151 

validation studies (Deeter et al., 2010, 2012, 2013, 2014, 2016, 2017, 2019; Emmons et al., 2004, 152 

2007, 2009). There are four main steps in aircraft versus MOPITT comparisons. 153 

(1) Because of aircraft altitude limitations, in-situ data from field campaigns do not typically reach 154 

the highest altitudes at which MOPITT radiances are sensitive.  Therefore, to obtain a complete 155 

vertical profile as required for comparison with MOPITT retrievals, each in-situ profile is extended 156 

vertically using the following steps: (i) the aircraft measurements are interpolated to the 35-level 157 

vertical grid used in MOPITT forward model calculations (0.2–1060 hPa); (ii) the levels from the 158 

surface to the lowest-altitude aircraft measurement are filled with the value of the in-situ 159 

measurement at the lowest-altitude aircraft measurement; (iii) for levels above a certain pressure 160 

level Pinterp (e.g., 200 hPa), model or reanalysis data are used directly; (iv) for levels between the 161 

highest-altitude aircraft measurement and below Pinterp, values are linearly interpolated. Unlike the 162 

previous MOPITT evaluation studies that used monthly model results from MOZART (Model for 163 

OZone And Related chemical Tracers) (Emmons et al., 2010) or CAM-chem (Community 164 

Atmosphere Model with chemistry) (Lamarque et al., 2012), here we use 3-hourly Copernicus 165 

Atmosphere Monitoring Service (CAMS) reanalysis of CO produced by the European Centre for 166 

Medium-Range Weather Forecasts (ECMWF). CAMS CO reanalysis has a horizontal resolution 167 

of 80 km ́  80 km, and 60 vertical grids (from surface to 0.1 hPa). Satellite retrievals of atmospheric 168 

composition including MOPITT TIR Version 6 total column CO retrievals are assimilated in the 169 

CAMS reanalysis (Inness et al., 2019; 170 

https://confluence.ecmwf.int/pages/viewpage.action?pageId=83396018). The final CO profile at 171 

the 35-level vertical grid is then regridded onto a coarser 10-level grid (for consistency with the 172 

actual MOPITT retrieval grid) by averaging the fine-grid VMR values in the layers immediately 173 

above the corresponding levels in the retrieval grid. We have conducted further calculations to 174 

investigate the sensitivity of validation results to Pinterp in Section 4.1.   175 
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 (2) For a given in-situ profile, only MOPITT profiles retrieved within the radius of 100 km and 176 

within 12 hours of the acquisition of the aircraft profile are considered co-located with the aircraft 177 

profile and are selected for comparisons. Sensitivities of validation results to the radius and time 178 

criteria for co-location selection have been further investigated in Section 4.2. 179 

(3) For each pair of co-located MOPITT retrieval and in-situ profiles, we apply the MOPITT a 180 

priori profile and averaging kernel to the in-situ profile， 181 

𝑥#"&-./0"1*2 = 𝑥& + 𝐴 𝑥4-5.4#) − 𝑥&     (2) 182 

so that the transformed in-situ profile (𝑥#"&-./0"1*2) has the same degree of smoothing and a priori 183 

dependence as the MOPITT profile. 184 

(4) For each in-situ profile, there are likely to be multiple MOPITT retrievals that meet the above 185 

co-location criteria. If an in-situ profile is co-located with fewer than five MOPITT retrievals, the 186 

in-situ profile is not used in the following study and analysis. If an in-situ profile is co-located with 187 

five or more MOPITT retrievals, these co-located MOPITT profiles are averaged as log10(VMR). 188 

Applying these corresponding different MOPITT a priori profiles and averaging kernels to the 189 

same in-situ profile results in different transformed in-situ profiles. These transformed in-situ 190 

profiles that are generated from the same in-situ profile are also averaged. 191 

Figure 2 shows an example of profile comparisons (the original aircraft profile, aircraft 192 

profile extended with CAMS reanalysis data and regridded to 35-level grid, 𝑥4-5.4#) , 𝑥& , 193 

𝑥#"&-./0"1*2 , and 𝑥"#$ ) in VMR for an aircraft profile sampled on July 22, 2011 during 194 

DISCOVER-AQ DC. Figure 2 also demonstrates what to expect within a MOPITT retrieval pixel 195 

and vertical level. The MOPITT retrievals have a spatial resolution of about 22 km ´ 22 km, and 196 

each MOPITT retrieval level corresponds to a uniformly-weighted layer immediately above that 197 

level. The vertical and horizontal variability of the original aircraft CO observations in each 198 

MOPITT layer (represented by standard deviation) are also shown. Taking the level of 800 hPa as 199 

an example, the variability of the original aircraft CO observations in the level is 21.4 ppb, which 200 

is larger than the difference between 𝑥#"&-./0"1*2 and 𝑥"#$ at that level. We also show the relative 201 

scale of the aircraft profile (3 km ´ 5 km) and a MOPITT retrieval pixel (22 km ´ 22 km) in Figure 202 

2. We expect the variability of CO within a MOPITT retrieval pixel to be even larger than the CO 203 

variability within the scale of 3 km ´ 5 km. The variability within a satellite pixel and the 204 
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representativeness error in the satellite retrieval and aircraft profile comparisons make it very 205 

challenging to validate satellite retrievals against aircraft observations. This is one of the major 206 

reasons that MOPITT has yet to be validated over urban regions. The representativeness error has 207 

been discussed in previous studies (Fishman et al., 2011; Follette-Cook et al., 2015; Judd et al., 208 

2019). In this study, we demonstrate this challenge with an example in Figure 2. We also show in 209 

Section 4 the sensitivity analysis to provide perspectives on how the spatial and temporal 210 

representativeness may change the validation results. Further quantification of the variability 211 

within MOPITT pixels would be very challenging (partially due to limited coverage of the 212 

observational data), and we will elaborate more on this issue in Section 5. 213 

 214 

3. MOPITT validation over urban regions 215 

In this section, the MOPITT validation results are provided for only daytime retrievals (i.e., 216 

solar zenith angle < 80° in the retrieval), because (1) MOPITT retrievals generally contain more 217 

CO profile information in daytime, which is reflected in AKs and Degrees of Freedom for Signal 218 

(DFS) in Figure 3, and (2) most aircraft profiles are sampled during daytime. In Section 4.3, we 219 

discuss the sensitivity to the inclusion of MOPITT nighttime retrievals in the validation process. 220 

In addition, many aircraft profiles, especially those from DISCOVER-AQ, lack observations 221 

above 600 hPa. Even though we extended the aircraft profiles vertically with reanalysis data (as 222 

discussed in Section 2.3), this still prevents the use of these profiles for validating MOPITT 223 

retrievals at upper levels against observations. In this paper, we only focus on validating MOPITT 224 

retrievals below 600 hPa. Nevertheless, since the CO retrievals below 600 hPa are still weakly 225 

impacted by CO fields in the upper levels (as shown by the AKs in Figure 3), in Section 4.1 we 226 

perform sensitivity tests on how augmenting the aircraft profiles with reanalysis fields affects the 227 

validation results. 228 

3.1 Overall statistics 229 

The overall validation results are presented in Table 2. Following Deeter et al. (2017), 230 

retrieval biases and standard deviation (SD) are calculated based on mean 𝑥"#$ and 𝑥#"&-./0"1*2 231 

for each in-situ profile, and converted from log(VMR) to percent. The correlation coefficient (r) is 232 

quantified based on 𝑥"#$ − 𝑥&  and the corresponding 𝑥#"&-./0"1*2 − 𝑥&  to avoid correlations 233 
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which mainly result from the variability of the a priori. 𝑥"#$ , 𝑥#"&-./0"1*2 , and 𝑥&  are in 234 

log10(VMR) space in order to apply the AKs, which are computed for 𝑥"#$  in log10(VMR). 235 

Corresponding results for MOPITT Version 8 TIR-only (V8T) and Version 8 TIR-NIR (V8J) are 236 

shown in Figures 4 (for all profiles) and 5 (for urban profiles). Overall biases for V8J products 237 

(averaged over all campaigns in Table 1) vary from -0.7% to 0.0%, which are lower than biases 238 

for V8T (from 2.0% to 3.5%). Overall biases for V8J products are also lower than biases for V7J 239 

(from -0.5% to -5.4%). For V8J and V7J, biases over urban regions vary from -0.2% to -0.8% and 240 

from -8.9% to -1.4%, respectively, which are generally higher than biases over non-urban regions 241 

(-0.3%~1.1% and -3.3%~0.1%). Correlation coefficients over non-urban regions are generally 242 

higher than those over urban regions for all six products (V7T, V8T, V7N, V8N, V7J, V8J) at all 243 

three levels (surface, 800 hPa, 600 hPa). For example, for the V8J product, correlation coefficients 244 

over urban regions are 0.53, 0.57, and 0.53 at the surface, 800 hPa, and 600 hPa, respectively, 245 

while over non-urban regions, the corresponding correlation coefficients are 0.76, 0.73 and 0.67. 246 

We also notice that V8 products generally have higher correlation coefficients with in-situ 247 

measurements than V7 over non-urban regions, whereas over urban regions, V8 products generally 248 

have lower correlation coefficients than V7. Overall, MOPITT products (especially V8J) perform 249 

reasonably well over both urban and non-urban regions. Performance over non-urban regions is 250 

better than that over urban regions in terms of correlation coefficients and biases for V8J and V7J. 251 

3.2 Discussions on individual campaigns  252 

We also provide MOPITT V8J evaluation against individual field campaigns in Figure 6. 253 

The corresponding results for MOPITT V8T are summarized in Figure S2. The patterns of biases 254 

are very similar for MOPITT V8J and V8T. Thus, in this sub-section, we focus on V8J unless 255 

stated otherwise. Overall, besides comparisons with A-FORCE and ARIAs, biases over urban 256 

regions and non-urban regions do not have a significant difference. Neither do biases determined 257 

for campaigns over the US and EA differ significantly, either. When compared to DISCOVER-258 

AQ CA, MOPITT CO values are generally higher than in-situ profiles at 600 hPa but not at the 259 

surface. This is likely related to the fact that the DISCOVER-AQ CA aircraft profiles are mostly 260 

below 600 hPa, and hence CO values of these in-situ profiles at 600 hPa and above are filled with 261 

CAMS reanalysis data. In addition, DISCOVER-AQ CA was conducted in the winter when 262 

boundary layer height is at lower altitudes, which could also explain the difference, in particular 263 
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since most of the other campaigns are in more favorable weather conditions. The lack of aircraft 264 

observations at 600 hPa and above also has a smaller impact on the biases at 800 hPa through 265 

applying AK (see Figure 3). During the A-FORCE campaign, only 2 in-situ profiles out of 45 were 266 

sampled over urban regions. The locations of the two profiles are close to each other and they are 267 

both sampled on/near the coast of South Korea (Figure 1). MOPITT has large negative biases (-268 

30%~-40%) when compared to these two profiles. The averaged 𝑥4-5.4#),	𝑥&,	𝑥#"&-./0"1*2, and 269 

𝑥"#$ over non-urban regions during A-FORCE and the 𝑥4-5.4#),	𝑥&,	𝑥#"&-./0"1*2, and 𝑥"#$ of the 270 

two profiles over urban regions are shown in Figure S3. Compared to the averaged 𝑥4-5.4#), the 271 

𝑥4-5.4#) for the two profiles over the urban regions have large enhancements near the surface and 272 

between 600~800 hPa. Even though the 𝑥&  and 𝑥"#$  for the two profiles have higher CO 273 

concentrations (~400 ppb at the surface) than the averaged 𝑥& and 𝑥"#$ (~200 ppb at the surface), 274 

they are still lower than the 𝑥#"&-./0"1*2. As for KORUS-AQ, MOPITT also has a negative bias 275 

(though smaller) when compared to the profiles over urban regions. Most of these KORUS-AQ 276 

profiles were located near the two profiles from A-FORCE but farther from the coast. The negative 277 

bias is not seen over non-urban regions during KORUS-AQ at the surface. When compared to the 278 

in-situ profiles from ARIAs, MOPITT has a large positive bias, especially over urban regions 279 

(20%~30%). During ARIAs, in-situ profiles over urban regions have lower CO values (~200 ppb 280 

at the surface) than those in-situ profiles over non-urban regions (~ 400 ppb at the surface; Figure 281 

S4). We note there are only a small number of in-situ profiles over urban regions in EA used in 282 

this study, compared to what is provided by DISCOVER-AQ in the US. The large negative biases 283 

against A-FORCE and large positive biases against ARIAs point to the need for more in-situ 284 

observations over EA. 285 

3.3 Validation at high CO concentrations 286 

Urban regions are often associated with high CO concentrations. But this is not always the 287 

case (e.g., Figure S4). Here we separate the in-situ profiles at the surface, 800 hPa, and 600 hPa 288 

into lower 50% CO values and higher 50% CO values based on CO values at each level to 289 

demonstrate the impact of CO concentrations on the MOPITT product validation (Figure 7). For 290 

V8J, MOPITT has smaller biases at higher 50% CO concentrations all three levels, whereas for 291 

V8T, MOPITT has larger biases at the surface and 600 hPa at higher 50% CO concentrations. For 292 

both V8J and V8T, MOPITT has larger SDs and lower correlation coefficients at the surface, 800 293 
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hPa, and 600 hPa if only the upper 50% of measured CO mixing ratios are considered, suggesting 294 

that this validation of MOPITT at higher CO concentrations is not as good as that at lower CO 295 

concentrations. In contrast, Deeter et al. (2016) found that the retrieval biases do not visibly 296 

increase at the upper range of CO concentrations when compared to aircraft measurements over 297 

the Amazon basin. The vertical error bars in Figure 7 (caused by the multiple co-located MOPITT 298 

profiles with one in-situ profile) represent the variability (standard deviation) of the MOPITT data 299 

used to calculate each of the plotted mean values. For an in-situ profile, the variability of the 300 

MOPITT data located within its radius of 100 km and within 12 hours is larger when the in-situ 301 

profile has higher CO values, indicated by larger error bars at higher 50% CO concentrations. 302 

However, it is unclear whether the larger apparent bias at high CO concentration actually 303 

represents larger retrieval uncertainties or could be related to greater CO variability and 304 

representativeness of the in situ profile within the co-location radius used for analyzing the 305 

MOPITT data. We will discuss the sensitivity of radius and time difference for the selection of co-306 

located data in Section 4. The difference in the variability at different CO concentrations was not 307 

found in Deeter et al. (2016). It could be partially due to the fact that the aircraft profiles over the 308 

Amazon basin used in Deeter et al. (2016) were sampled in more geographically homogeneous 309 

conditions, whereas the profiles used in this study are from different campaigns, and high CO 310 

concentrations over and near urban regions might be associated with more complex and 311 

inhomogeneous conditions. 312 

 313 

4. Sensitivities to assumptions made for aircraft-satellite comparisons 314 

4.1 Sensitivity to the in-situ profile extension 315 

As discussed in Section 2.3, the in-situ profiles must be vertically extrapolated or extended 316 

for use in MOPITT validation due to aircraft altitude limits.  Thus, model or reanalysis data must 317 

be merged with the in-situ data to generate a complete CO profile for comparisons with MOPITT 318 

satellite retrievals. The use of model or reanalysis data may introduce uncertainties in the 319 

validation results as they are not measured directly. The parameter Pinterp controls the impact of the 320 

model-based profile extension on the shape and value of in-situ profiles (see Figure S5). Here we 321 

test the sensitivity of validation results to various Pinterp values (100 hPa, 200 hPa, 300 hPa, 400 322 

hPa, 500 hPa) to demonstrate the potential impact of the profile extension on the validation results. 323 
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Note that the model-based profile extension and the value of Pinterp impacts the validation results 324 

through changing the augmented observational profile, which is different from the other sensitivity 325 

tests in this study that change the selection of MOPITT data. The validation results at the surface 326 

are insensitive to the selection of Pinterp (Figure 8). The overall validation results at the 800 hPa are 327 

also not sensitive to Pinterp, except for the validation results against DISCOVER-AQ CA which 328 

have slightly larger biases when Pinterp is 200 hPa or 100 hPa. As mentioned in Section 3.2, the 329 

DISCOVER-AQ CA aircraft profiles are mostly below 600 hPa, and hence CO values of these in-330 

situ profiles at 600 hPa and above are extended using reanalysis data. Therefore, the validation 331 

results against DISCOVER-AQ CA are more likely to be affected by Pinterp compared to other 332 

campaigns which typically obtained higher maximum aircraft altitudes. At 600 hPa, the validation 333 

results are more affected by Pinterp compared to the those at the surface and 800 hPa. The validation 334 

results using 100 hPa as Pinterp have larger biases. The validation results using 300, 400, or 500 hPa 335 

as Pinterp are not significantly different for the validation results against DISCOVER-AQ CA. The 336 

validation results against DISCOVER-AQ CA using 200 hPa as Pinterp show similar results as those 337 

using 100 hPa as Pinterp. The validation results to the Pinterp at 400 hPa and 200 hPa are even more 338 

sensitive with larger biases (Figure S6). As mentioned in Section 3.2, the DISCOVER-AQ CA 339 

aircraft measurements concentrate below 600 hPa, so CO values in the in-situ profiles at 600 hPa 340 

and above are filled with and are more sensitive to CAMS reanalysis data. The CAMS 3-hourly 341 

reanalysis data are constrained by observations, but its usage may still introduce the uncertainties 342 

in the validation results especially at upper pressure levels (e.g., 200 hPa and 400 hPa). Previous 343 

MOPITT evaluation results may be subject to larger uncertainties by using CAM-chem monthly 344 

CO fields that are not constrained by observations. 345 

4.2 Sensitivity to the radius and allowed maximum time difference as criteria for co-location  346 

The criteria for co-location in this study (within the radius of 100 km and within 12 hours 347 

of the acquisition of the aircraft profile) generally follow previous MOPITT validation studies (e.g., 348 

Deeter et al., 2016, 2019) and are chosen empirically. They are selected based on a trade-off 349 

between uncertainties generated from CO spatial and/or temporal variability, and the number of 350 

included MOPITT retrievals that impacts the statistical robustness. Here we test the sensitivity of 351 

the validation results to the two criteria for co-location. The boxplot of biases calculated with 352 

different radii (200 km, 100 km, 50 km, and 25 km) at the surface, 800 hPa, and 600 hPa are shown 353 

in Figure 9. Overall, the biases calculated with radius of 200 km, 100 km and 50 km are close, 354 
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whereas the biases calculated with the radius of 25 km are different from others. The validation 355 

results using the radius of 25 km generally have larger biases and SD, due to a smaller number of 356 

included MOPITT retrievals. In some cases, there are no matched MOPITT retrievals within the 357 

radius of 25km of the aircraft profile (e.g., DISCOVER-AQ CA and ARIAs). In addition, 358 

representativeness errors would be expected to go up if there are only a few retrievals over a a 359 

more more polluted and perhaps heterogeneous area. We note that the usage of the largest radius 360 

(200 km) in this paper does not appear to degrade the results through introducing 361 

representativeness errors generated from CO spatial and/or temporal variability, whereas use of 362 

the smallest radius (25 km) degrades the results by reducing the number of included MOPITT 363 

retrievals. 364 

The boxplot of biases calculated with four sets of allowed maximum time difference (12 365 

hours, 6 hours, 3 hours, and 1 hours) are shown in Figure 10. The overall validation results are not 366 

sensitive to the selection of allowed maximum time difference, especially at the surface. One 367 

exception is the validation results against the SEAC4RS campaign at 600 hPa, due to a smaller 368 

number of MOPITT retrievals in the shorter time window. We note that when validated against 369 

the ARIAs campaign, the biases at the surface, 800 hPa and 600 hPa are smaller with the allowed 370 

maximum time difference as 1h, indicating the temporal variability is relatively large in the region. 371 

And the improvement observed for ARIAs for the shortest time also points to the possibility that 372 

short term emission sources might be responsible for the large biases there. On the other hand, 373 

when the allowed maximum time difference equals 1 hour, there are only 6 aircraft profiles that 374 

have matched MOPITT retrievals.  375 

4.3 Sensitivity to the inclusion of MOPITT nighttime retrievals 376 

 Previous MOPITT validation studies have only included MOPITT daytime observations. 377 

Over land, MOPITT retrievals for daytime and nighttime overpasses are characterized by 378 

significantly different averaging kernels (Figure 3), and may be subject to different types of 379 

retrieval error (Deeter et al., 2007). CO has a long enough lifetime in the free troposphere that 380 

nighttime observations could be potentially comparable, in general, to the daytime flights for 381 

remote sites. However, for urban regions where the spatiotemporal variability of the emissions and 382 

evolution of the planetary boundary layer drives large changes in the measured CO, comparisons 383 

of MOPITT nighttime observations to aircraft profiles sampled during daytime may introduce 384 
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representative uncertainties. It is difficult to disentangle the effects of the MOPITT 385 

daytime/nighttime performance and the uncertainty from the temporal representativeness, based 386 

on the comparison of the MOPITT daytime/nighttime retrievals with daytime aircraft profiles. 387 

Therefore, we only include the results in Figure S7 and briefly describe the results here without 388 

drawing any further conclusions. Overall, MOPITT nighttime retrievals have larger biases than 389 

daytime retrievals, which could be expected since most of the aircraft profiles are sampled during 390 

daytime. Flight campaigns with nighttime observations are needed to validate MOPITT nighttime 391 

retrievals. 392 

4.4 Sensitivity to the signal-to-noise ratio (SNR) filters 393 

 The MOPITT Level 3 data are generated from Level 2 data, and are available as gridded 394 

daily-mean and monthly-mean files. Pixel filtering and signal-to-noise ratio (SNR) thresholds for 395 

Channel 5 and 6 Average radiances are used when averaging Level 2 data into Level 3 data, and 396 

this increases overall mean DFS values (details can be found in the MOPITT user guide; 397 

https://www2.acom.ucar.edu/sites/default/files/mopitt/v8_users_guide_201812.pdf). Taking 398 

MOPITT V8J daytime product as an example, Level 3 data product excludes all observations from 399 

Pixel 3 (one of the four elements of MOPITT's linear detector array that has highly variable 400 

Channel 7 SNR values), or observations where both the Channel 5 Average radiances SNR < 1000 401 

and the Channel 6 Average radiances SNR < 400. In Figure 11, we test the impact of applying the 402 

aforementioned SNR filters on the validation results. We find that applying the SNR filters does 403 

not improve the overall agreement between MOPITT retrievals and in-situ profiles. In some cases, 404 

applying the SNR filters degrades the validation results (e.g., DISCOVER-AQ DC at the surface, 405 

DISCOVER-AQ CA at the surface, KORUS-AQ at 600 hPa, and ARIAs at the surface, 800 hPa, 406 

and 600 hPa). This is mostly because applying the SNR filters reduces the number of MOPITT 407 

retrievals included in the comparisons. This effect is particularly important if there are not many 408 

MOPITT retrievals to begin with (such as our comparisons with in-situ profiles in this study). 409 

However, when generating Level 3 data from Level 2 data, the circumstance is different as there 410 

are usually much more data to perform the filter and averaging process. 411 

 412 

5. Discussion and conclusions 413 
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MOPITT products are widely used for monitoring and analyzing CO over urban regions. 414 

However, systematic validation against observations over urban regions has been lacking. In this 415 

study, we compared MOPITT products over urban regions to aircraft measurements from 416 

DISCOVER-AQ, SEAC4RS, ARIAs, A-FORCE, and KORUS-AQ campaigns. The DISCOVER-417 

AQ campaign was designed primarily with satellite validation in mind, and the campaign over DC, 418 

CA, TX, and CO together contributes 64.8% (232 out of 358) of the aircraft profiles and 91.0% 419 

(121 out of 133) of the aircraft profiles over the urban regions (Table 1). Therefore, the 420 

DISCOVER-AQ campaign largely contributes to the validation results and the statistics in this 421 

study. We found that MOPITT biases are well within the 10% required accuracy for both urban 422 

and non-urban regions (overall biases for V8J and V8T vary from -0.7% to 0.0%, and from 2.0% 423 

to 3.5%). The performance over non-urban regions is better than that over urban regions in terms 424 

of correlation coefficients for the 6 products in Table 2, and biases of V8J and V7J. However, the 425 

in-situ profiles over EA used in this study are limited, especially over urban regions (only 11 426 

profiles). The large biases against aircraft profiles from the A-FORCE and ARIAs campaigns point 427 

to the need for more in-situ observations over EA. We also studied the impact of CO concentrations 428 

on the MOPITT product validation by dividing the aircraft profiles of CO to two groups of high 429 

CO (upper 50%) and low CO (lower 50%). We found that MOPITT retrievals at high CO 430 

concentrations have higher biases and lower correlations compared low CO concentrations, 431 

although CO variability may tend to exaggerate retrieval biases in heavily-polluted scenes. 432 

 In addition, the assumptions and data filters made during aircraft-satellite comparisons may 433 

impact the validation results. We tested the sensitivities of validation results to assumptions and 434 

data filters, including the model-based extension to the in-situ profile, radius and allowed 435 

maximum time difference as criteria for the selection of co-located data, the inclusion of nighttime 436 

MOPITT data, and the SNR filters. The validation results at the surface are insensitive to the 437 

model-based profile extension, whereas the validation results at upper levels (e.g., 400 hPa and 438 

200 hPa) are more sensitive to the profile extension, as there are very limited aircraft observations. 439 

The validation results are insensitive to the allowed maximum time difference as co-location 440 

criteria, and are generally insensitive to the radius for co-location except for the case with a radius 441 

of 25 km, where a small number of MOPITT retrievals are included in the validation. Overall, 442 

daytime MOPITT products overall have smaller biases than nighttime MOPITT products. 443 

However, conclusions regarding the performance of MOPITT daytime and nighttime retrievals 444 
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cannot be drawn due to the fact that most of the aircraft profiles are sampled during daytime. As 445 

we mentioned earlier, MOPITT daytime and nighttime retrievals may be subject to different 446 

retrieval errors. In addition, previous studies suggest pollutants themselves may have different 447 

characteristics during daytime and nighttime (e.g., Yan et al., 2018). Therefore, validation of 448 

MOPITT nighttime retrievals, with a sufficient number of nighttime airborne profiles, is needed 449 

in order to study nighttime CO characteristics and trends. Applying SNR filters does not 450 

necessarily improve the overall agreement between MOPITT retrievals and in-situ profiles, and 451 

this may be partially caused by the smaller number of MOPITT retrievals in the validation process 452 

after the SNR filters, which is unlikely to happen when generating Level 3 data. We note that 453 

validation results against ARIAs are an exception in a few sensitivity tests due to rather a limited 454 

number of aircraft measurements. Given the large biases against aircraft profiles from the ARIAs 455 

campaign, more in-situ observations over EA especially China are needed in order to validate 456 

MOPITT products in the region. 457 

Validation and evaluation of satellite retrievals with aircraft observations are very 458 

challenging, and assumptions have to be made for the comparisons. As discussed in Section 2, the 459 

CO spatial variability within MOPITT retrieval pixels and the representativeness error of aircraft 460 

profiles when compared to MOPITT retrievals may introduce uncertainties in the validation 461 

results. This issue is difficult to address and quantify due to the limited spatial coverage of dense 462 

aircraft observations. Follette-Cook et al. (2015) quantified spatial and temporal variability of 463 

column integrated air pollutants, including CO, during DISCOVER-AQ DC from modeling 464 

perspective (using the Weather Research and Forecasting model coupled with Chemistry - WRF-465 

Chem). They found that during the July 2011 DISCOVER-AQ campaign, the mean CO difference 466 

at the distance of 20-24 km is ~30 ppb (derived from the aircraft observations) and ~40 ppb 467 

(derived from co-located WRF-Chem output), based on structure function analyses. Judd et al. 468 

(2019) explored the impact of spatial resolution on tropospheric NO2 column retrievals with NASA 469 

Geostationary Trace Gas and Aerosol Sensor Optimization (GeoTASO). We expect CO to have a 470 

smaller spatial and temporal variability than NO2 due primarily to its relatively longer lifetime, 471 

though future analyses of NO2 variability within urban regions using GeoTASO could provide an 472 

upper estimate on CO variability. In addition, the variability of Tropospheric Monitoring 473 

Instrument (TROPOMI) CO retrievals, with a pixel size of 7 km´7 km (Landgraf et al., 2016). 474 

within the larger MOPITT footprint might also provide information on MOPITT sub-pixel 475 
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variability. Further research on trace gas spatial variability within satellite retrieval pixels, and 476 

quantification of the representativeness error incurred by using individual aircraft profiles in 477 

validation comparisons is needed, and will be the subject of a follow-up study. 478 

 479 

Acknowledgements 480 

MOPITT products are available at https://www2.acom.ucar.edu/mopitt. MOPITT data can 481 

be downloaded at https://earthdata.nasa.gov/. The NCAR MOPITT project is supported by the 482 

National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Program.		483 

The authors thank the DISCOVER-AQ, SEAC4RS, ARIAs, A-FORCE, and KORUS-AQ Science 484 

Teams for the valuable in-situ observations. DISCOVER-AQ data can be accessed at https://www-485 

air.larc.nasa.gov/missions/discover-aq/discover-aq.html. SEAC4RS data can be accessed at 486 

https://www-air.larc.nasa.gov/missions/seac4rs/. We thank Drs. Naga Oshima and Makoto Koike 487 

for the A-FORCE data. KORUS-AQ data can be accessed at https://www-488 

air.larc.nasa.gov/missions/korus-aq/index.html. The authors thank Dr. Frank Flocke for helpful 489 

comments on the manuscript. Wenfu Tang thanks Dr. Cenlin He for helpful discussions. The 490 

National Center for Atmospheric Research (NCAR) is sponsored by the National Science 491 

Foundation. W. Tang is supported by a NCAR Advanced Study Program Postdoctoral Fellowship.  492 

 493 

References 494 

Al-Saadi, J., Carmichael, G., Crawford, J., Emmons, L., Song, C. K., Chang, L. S., ... & Park, R. 495 
(2015). NASA contributions to KORUS-AQ: An international cooperative air quality field study 496 
in Korea. NASA White Paper available at: https://goo. gl/VhssdX (last access: 3 May 2016). 497 
 498 
Aliyu, Y. A., & Botai, J. O.: Appraising city-scale pollution monitoring capabilities of multi-499 
satellite datasets using portable pollutant monitors. Atmospheric environment, 179, 239-249, 2018. 500 
 501 
Arellano, A. F., Kasibhatla, P. S., Giglio, L., van der Werf, G. R., and Randerson, J. T.: Topdown 502 
estimates of global CO sources using MOPITT measurements, Geophys. Res. Lett., 31, L01104, 503 
doi:10.1029/2003GL018609, 2004. 504 
 505 
Arellano, A. F., Kasibhatla, P. S., Giglio, L., van der Werf, G. R., Randerson, J. T., and Collatz, 506 
G. J.:, Time-dependent inversion estimates of global biomass-burning CO emissions using 507 
Measurement of Pollution in the Troposphere (MOPITT) measurements, J. Geophys. Res., 111, 508 
D09303, doi:10.1029/2005JD006613, 2006. 509 
 510 

https://doi.org/10.5194/amt-2019-419
Preprint. Discussion started: 28 November 2019
c© Author(s) 2019. CC BY 4.0 License.



 18 

Arellano A. F. Jr., Raeder, K., Anderson, J. L., Hess, P. G., Emmons, L. K., Edwards, D. P., Pfister, 511 
G. G., Campos, T. L., and Sachse, G. W.: Evaluating model performance of an ensemble-based 512 
chemical data assimilation system during INTEX-B field mission, Atmos. Chem. Phys., 7, 5695-513 
5710, https://doi.org/10.5194/acp-7-5695-2007, 2007. 514 
 515 
Chen, D., Wang, Y., McElroy, M. B., He, K., Yantosca, R. M., and Le Sager, P.: Regional CO 516 
pollution and export in China simulated by the high-resolution nested-grid GEOS-Chem model, 517 
Atmos. Chem. Phys., 9, 3825-3839, https://doi.org/10.5194/acp-9-3825-2009, 2009. 518 
 519 
Clerbaux, C., Edwards, D. P., Deeter, M., Emmons, L., Lamarque, J.-F., Tie, X. X., Massie, S. T., 520 
and Gille, J.: Carbon monoxide pollution from cities and urban areas observed by the 521 
Terra/MOPITT mission, Geophys. Res. Lett., 35, 3817, doi:10.1029/2007GL032300, 2008. 522 
 523 
Deeter, M. N., Emmons, L. K., Francis, G. L., Edwards, D. P., Gille, J. C., Warner, J. X., Khattatov, 524 
B., Ziskin, D., Lamarque, J.-F., Ho, S.-P., Yudin, V., Attie, J.-L., Packman, D., Chen, J., Mao, D., 525 
and Drummond, J. R.: Operational carbon monoxide retrieval algorithm and selected results for 526 
the MOPITT instrument, J. Geophys. Res., 108(D14), 4399, doi:10.1029/2002JD003186, 2003. 527 
 528 
Deeter,M. N., Edwards, D. P., Gille, J. C., Emmons, L. K., Francis, G., Ho, S.-P., Mao, D., Masters, 529 
D., Worden, H., Drummond, J. R., and Novelli, P. C.: The MOPITT version 4 CO product: 530 
Algorithm enhancements, validation, and long-term stability, J. Geophys. Res., 115, D07306, 531 
doi:10.1029/2009JD013005, 2010. 532 
 533 
Deeter, M. N., Worden, H. M., Gille, J. C., Edwards, D. P., Mao, D., and Drummond, J. R.: 534 
MOPITT multispectral CO retrievals: Origins and effects of geophysical radiance errors, J. 535 
Geophys. Res., 116, D15303, doi:10.1029/2011JD015703, 2011. 536 
 537 
Deeter, M. N., Worden, H. M., Edwards, D. P., Gille, J. C., and Andrews, A. E.: Evaluation of 538 
MOPITT Retrievals of Lowertropospheric Carbon Monoxide over the United States, J. Geophys. 539 
Res., 117, D13306, doi:10.1029/2012JD017553, 2012. 540 
 541 
Deeter, M. N., Martínez-Alonso, S., Edwards, D. P., Emmons, L. K., Gille, J. C., Worden, H. M., 542 
Pittman, J. V., Daube, B. C., and Wofsy, S. C.: Validation of MOPITT Version 5 thermalinfrared, 543 
near-infrared, and multispectral carbon monoxide profile retrievals for 2000–2011, J. Geophys. 544 
Res., 118, 6710–6725, doi:10.1002/jgrd.50272, 2013. 545 
 546 
Deeter, M. N., Martínez-Alonso, S., Edwards, D. P., Emmons, L. K., Gille, J. C., Worden, H. M., 547 
Sweeney, C., Pittman, J. V., Daube, B. C., and Wofsy, S. C.: The MOPITT Version 6 product: 548 
algorithm enhancements and validation, Atmos. Meas. Tech., 7, 3623–3632, 549 
https://doi.org/10.5194/amt-7-3623-2014, 2014. 550 
 551 
Deeter, M. N., Martínez-Alonso, S., Gatti, L. V., Gloor, M., Miller, J. B., Domingues, L. G., and 552 
Correia, C. S. C.: Validation and analysis of MOPITT CO observations of the Amazon Basin, 553 
Atmos. Meas. Tech., 9, 3999–4012, https://doi.org/10.5194/amt-9-3999-2016, 2016. 554 
 555 

https://doi.org/10.5194/amt-2019-419
Preprint. Discussion started: 28 November 2019
c© Author(s) 2019. CC BY 4.0 License.



 19 

Deeter, M. N., Edwards, D. P., Francis, G. L., Gille, J. C., Martínez-Alonso, S., Worden, H. M., 556 
and Sweeney, C.: A climate-scale satellite record for carbon monoxide: the MOPITT Version 7 557 
product, Atmos. Meas. Tech., 10, 2533–2555, https://doi.org/10.5194/amt-10-2533-2017, 2017. 558 
 559 
Deeter, M. N., Edwards, D. P., Francis, G. L., Gille, J. C., Mao, D., Martínez-Alonso, S., Worden, 560 
H. M., Ziskin, D., and Andreae, M. O.: Radiance-based retrieval bias mitigation for the MOPITT 561 
instrument: the version 8 product, Atmos. Meas. Tech., 12, 4561–4580, 562 
https://doi.org/10.5194/amt-12-4561-2019, 2019. 563 
 564 
Edwards, D., Halvorson, C., and Gille, J.: Radiative transfer modeling for the EOS Terra satellite 565 
Measurement of Pollution in the Troposphere (MOPITT) instrument, J. Geophys. Res., 104, 566 
16755–16775, 1999. 567 
 568 
Edwards, D. P., Petron, G., Novelli, P. C., Emmons, L. K., Gille, J. C., and Drummond, J. R.: 569 
Southern Hemisphere carbon monoxide interannual variability observed by Terra/Measurement of 570 
Pollution in the Troposphere (MOPITT), J. Geophys. Res., 111, D16303, 571 
doi:10.1029/2006JD007079, 2006. 572 
 573 
Emmons, L. K., Deeter, M. N., Gille, J. C., et al.: Validation of Measurements of Pollution in the 574 
Troposphere (MOPITT) CO retrievals with aircraft in situ profiles, J. Geophys. Res., 109, D03309, 575 
doi:10.1029/2003JD004101, 2004. 576 
 577 
Emmons, L. K., Pfister, G. G., Edwards, D. P., Gille, J. C., Sachse, G., Blake, D., Wofsy, S., 578 
Gerbig, C., Matross, D., and N´ed´elec, P.: Measurements of Pollution in the Troposphere 579 
(MOPITT) validation exercises during summer 2004 field campaigns over North America, J. 580 
Geophys. Res., 112, D12S02, doi:0.1029/2006JD007833, 2007. 581 
 582 
Emmons, L. K., Edwards, D. P., Deeter, M. N., Gille, J. C., Campos, T., Nédélec, P., Novelli, P., 583 
and Sachse, G.: Measurements of Pollution In The Troposphere (MOPITT) validation through 584 
2006, Atmos. Chem. Phys., 9, 1795-1803, https://doi.org/10.5194/acp-9-1795-2009, 2009. 585 
 586 
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., 587 
Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., 588 
Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related 589 
chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, 590 
https://doi.org/10.5194/gmd-3-43-2010, 2010. 591 
 592 
Fishman, J., Silverman, M. L., Crawford, J. H., & Creilson, J. K.: A study of regional-scale 593 
variability of in situ and model-generated tropospheric trace gases: Insights into observational 594 
requirements for a satellite in geostationary orbit. Atmospheric environment, 45(27), 4682-4694, 595 
2011. 596 
 597 
Follette-Cook, M., Pickering, K., Crawford, J., Duncan, B., Loughner, C., Diskin, G., Fried, A., 598 
and Weinheimer, A.: Spatial and temporal variability of trace gas columns derived from 599 
WRF/Chem regional model output: Planning for geostationary observations of atmospheric 600 
composition, Atmos. Environ., 118, 28–44, doi:10.1016/j.atmosenv.2015.07.024, 2015. 601 

https://doi.org/10.5194/amt-2019-419
Preprint. Discussion started: 28 November 2019
c© Author(s) 2019. CC BY 4.0 License.



 20 

 602 
Fortems-Cheiney, A., Chevallier, F., Pison, I., Bousquet, P., Szopa, S., Deeter, M. N., and 603 
Clerbaux, C.: Ten years of CO emissions as seen from Measurements of Pollution in the 604 
Troposphere (MOPITT), J. Geophys. Res., 116, D05304, doi:10.1029/2010JD014416, 2011. 605 
 606 
Friedl, M., Sulla-Menashe, D. (2015). MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly 607 
L3 Global 0.05Deg CMG V006 [Data set]. NASA EOSDIS Land Processes DAAC. Accessed 608 
2019-08-12 from https://doi.org/10.5067/MODIS/MCD12C1.006. 609 
 610 
Gaubert, B., Arellano, A. F., Barré, J., Worden, H. M., Emmons, L. K., Tilmes, S., Buchholz, R. 611 
R.,Vitt, F., Raeder, K., Collins, N., Anderson, J. L., Wiedinmyer, C., Martinez Alonso, S., Edwards, 612 
D. P., Andreae, M. O., Hannigan, J. W., Petri, C., Strong, K., and Jones, N.: Toward a chemical 613 
reanalysis in a coupled chemistry-climate model: An evaluation of MOPITT CO assimilation and 614 
its impact on tropospheric composition, J. Geophys. Res.-Atmos., 121, 7310–7343, 615 
https://doi.org/10.1002/2016JD024863, 2016. 616 
 617 
Girach, I. A. and Nair, P. R.: Carbon monoxide over Indian region as observed by MOPITT, Atmos. 618 
Environ., 99, 599–609, 2014. 619 
 620 
He, H., Stehr, J. W., Hains, J. C., Krask, D. J., Doddridge, B. G., Vinnikov, K. Y., Canty, T. P., 621 
Hosley, K. M., Salawitch, R. J., Worden, H. M., and Dickerson, R. R.: Trends in emissions and 622 
concentrations of air pollutants in the lower troposphere in the Baltimore/Washington airshed from 623 
1997 to 2011, Atmos. Chem. Phys., 13, 7859-7874, https://doi.org/10.5194/acp-13-7859-2013, 624 
2013. 625 
 626 
Heald, C. L., Jacob, D. J., Jones, D. B. A., Palmer, P. I., Logan, J. A., Streets, D. G., Sachse, G. 627 
W., Gille, J. C., Hoffman, R. N., and Nehrkorn, T.: Comparative inverse analysis of satellite 628 
(MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide, 629 
J. Geophys. Res., 109, D23306, doi:10.1029/2004JD005185, 2004. 630 
 631 
Hedelius, J. K., He, T.-L., Jones, D. B. A., Baier, B. C., Buchholz, R. R., De Mazière, M., 632 
Deutscher, N. M., Dubey, M. K., Feist, D. G., Griffith, D. W. T., Hase, F., Iraci, L. T., Jeseck, P., 633 
Kiel, M., Kivi, R., Liu, C., Morino, I., Notholt, J., Oh, Y.-S., Ohyama, H., Pollard, D. F., Rettinger, 634 
M., Roche, S., Roehl, C. M., Schneider, M., Shiomi, K., Strong, K., Sussmann, R., Sweeney, C., 635 
Té, Y., Uchino, O., Velazco, V. A., Wang, W., Warneke, T., Wennberg, P. O., Worden, H. M., 636 
and Wunch, D.: Evaluation of MOPITT Version 7 joint TIR–NIR XCO retrievals with TCCON, 637 
Atmos. Meas. Tech., 12, 5547–5572, https://doi.org/10.5194/amt-12-5547-2019, 2019. 638 
 639 
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., 640 
Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, 641 
S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS 642 
reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515-3556, 643 
https://doi.org/10.5194/acp-19-3515-2019, 2019. 644 
 645 

https://doi.org/10.5194/amt-2019-419
Preprint. Discussion started: 28 November 2019
c© Author(s) 2019. CC BY 4.0 License.



 21 

Jiang, Z., Worden, J. R., Jones, D. B. A., Lin, J.-T., Verstraeten, W. W., and Henze, D. K.: 646 
Constraints on Asian ozone using Aura TES, OMI and Terra MOPITT, Atmos. Chem. Phys., 15, 647 
99-112, https://doi.org/10.5194/acp-15-99-2015, 2015. 648 
 649 
Jiang, Z., McDonald, B. C., Worden, H., Worden, J. R., Miyazaki, K., Qu, Z., Henze, D. K., Jones, 650 
D. B. A., Arellano, A. F., Fischer, E. V., Zhu, L. Y., and Boersma, K. F.: Unexpected slowdown 651 
of US pollutant emission reduction in the past decade, P. Natl. Acad. Sci. USA, 115, 5099–5104, 652 
https://doi.org/10.1073/pnas.1801191115, 2018. 653 
 654 
Judd, L. M., Al-Saadi, J. A., Janz, S. J., Kowalewski, M. G., Pierce, R. B., Szykman, J. J., Valin, 655 
L. C., Swap, R., Cede, A., Mueller, M., Tiefengraber, M., Abuhassan, N., and Williams, D.: 656 
Evaluating the impact of spatial resolution on tropospheric NO2 column comparisons within urban 657 
areas using high-resolution airborne data, Atmos. Meas. Tech., https://doi.org/10.5194/amt-2019-658 
161, 2019. 659 
 660 
Kanakidou, M., Mihalopoulos, N., Kindap, T., Im, U., Vrekoussis, M., Dermitzaki, E., 661 
Gerasopoulos, E. , Unal, A., Koc¸ak, M., Markakis, K., Melas, D., Youssef, A. F., and Moubasher, 662 
H.: Megacities as hot spots of air pollution in the East Mediterranean, 663 
doi:10.1016/j.atmosenv.2010.11.048, 2011. 664 
 665 
Kar, J., Deeter, M. N., Fishman, J., Liu, Z., Omar, A., Creilson, J. K., Trepte, C. R., Vaughan, M. 666 
A., and Winker, D. M.: Wintertime pollution over the Eastern Indo-Gangetic Plains as observed 667 
from MOPITT, CALIPSO and tropospheric ozone residual data, Atmos. Chem. Phys., 10, 12273-668 
12283, https://doi.org/10.5194/acp-10-12273-2010, 2010. 669 
 670 
Kopacz, M., Jacob, D. J., Henze, D. K., Heald, C. L., Streets, D. G., and Zhang, Q.: Comparison 671 
of adjoint and analytical Bayesian inversion methods for constraining Asian sources of carbon 672 
monoxide using satellite (MOPITT) measurements of CO columns, J. Geophys. Res., 114, D04305, 673 
doi:10.1029/2007JD009264., 2009. 674 
 675 
Kopacz, M., Jacob, D. J., Fisher, J. A., Logan, J. A., Zhang, L., Megretskaia, I. A., Yantosca, R. 676 
M., Singh, K., Henze, D. K., Burrows, J. P., Buchwitz, M., Khlystova, I., McMillan, W. W., Gille, 677 
J. C., Edwards, D. P., Eldering, A., Thouret, V., and Nedelec, P.: Global estimates of CO sources 678 
with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, 679 
SCIAMACHY, TES), Atmos. Chem. Phys., 10, 855-876, https://doi.org/10.5194/acp-10-855-680 
2010, 2010. 681 
 682 
Kumar, R., Naja, M., Pfister, G. G., Barth, M. C., Wiedinmyer, C., and Brasseur, G. P.: Simulations 683 
over South Asia using the Weather Research and Forecasting model with Chemistry (WRF-Chem): 684 
chemistry evaluation and initial results, Geosci. Model Dev., 5, 619–648, 685 
https://doi.org/10.5194/gmd-5-619-2012, 2012. 686 
 687 
Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L., 688 
Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., and Tyndall, G. K.: CAM-689 
chem: description and evaluation of interactive atmospheric chemistry in the Community Earth 690 
System Model, Geosci. Model Dev., 5, 369–411, https://doi.org/10.5194/gmd-5-369-2012, 2012. 691 

https://doi.org/10.5194/amt-2019-419
Preprint. Discussion started: 28 November 2019
c© Author(s) 2019. CC BY 4.0 License.



 22 

 692 
Lamsal, L. N., Krotkov, N. A., Celarier, E. A., Swartz, W. H., Pickering, K. E., Bucsela, E. J., 693 
Gleason, J. F., Martin, R. V., Philip, S., Irie, H., Cede, A., Herman, J., Weinheimer, A., Szykman, 694 
J. J., and Knepp, T. N.: Evaluation of OMI operational standard NO2 column retrievals using in 695 
situ and surface-based NO2 observations, Atmos. Chem. Phys., 14, 11587-11609, 696 
https://doi.org/10.5194/acp-14-11587-2014, 2014. 697 
 698 
Landgraf, J., aan de Brugh, J., Scheepmaker, R., Borsdorff, T., Hu, H., Houweling, S., Butz, A., 699 
Aben, I., and Hasekamp, O.: Carbon monoxide total column retrievals from TROPOMI shortwave 700 
infrared measurements, Atmos. Meas. Tech., 9, 4955–4975, https://doi.org/10.5194/amt-9-4955-701 
2016, 2016. 702 
 703 
Li, L. and Liu, Y.: Space-borne and ground observations of the characteristics of CO pollution in 704 
Beijing, 2000–2010, Atmos. Environ., 45, 2367, doi:10.1016/j.atmosenv.2011.02.026, 2011. 705 
 706 
Tang, W., Arellano, A. F., DiGangi, J. P., Choi, Y., Diskin, G. S., Agustí-Panareda, A., Parrington, 707 
M., Massart, S., Gaubert, B., Lee, Y., Kim, D., Jung, J., Hong, J., Hong, J.-W., Kanaya, Y., Lee, 708 
M., Stauffer, R. M., Thompson, A. M., Flynn, J. H., and Woo, J.-H.: Evaluating high-resolution 709 
forecasts of atmospheric CO and CO2 from a global prediction system during KORUS-AQ field 710 
campaign, Atmos. Chem. Phys., 18, 11007–11030, https://doi.org/10.5194/acp-18-11007-2018, 711 
2018. 712 
 713 
Tang, W., Arellano, A. F., Gaubert, B., Miyazaki, K., and Worden, H. M.: Satellite data reveal a 714 
common combustion emission pathway for major cities in China, Atmos. Chem. Phys., 19, 4269–715 
4288, https://doi.org/10.5194/acp-19-4269-2019, 2019. 716 
 717 
Toon, O. B., Maring, H., Dibb, J., Ferrare, R., Jacob, D. J., Jensen, E. J., Luo, Z. J., Mace, G. G., 718 
Pan, L. L., Pfister, L., and Rosenlof, K. H.: Planning, implementation, and scientific goals of the 719 
Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional 720 
Surveys (SEAC4RS) field mission, J. Geophys. Res.-Atmos., 121, 4967–5009, 721 
doi:10.1002/2015JD024297, 2016. 722 
 723 
Wang, F., Li, Z., Ren, X., Jiang, Q., He, H., Dickerson, R. R., Dong, X., and Lv, F.: Vertical 724 
distributions of aerosol optical properties during the spring 2016 ARIAs airborne campaign in the 725 
North China Plain, Atmos. Chem. Phys., 18, 8995–9010, https://doi.org/10.5194/acp-18-8995-726 
2018, 2018. 727 
 728 
Worden, H. M., Deeter, M. N., Edwards, D. P., Gille, J. C., Drummond, J. R., and Nédélec, P.: 729 
Observations of near-surface carbon monoxide from space using MOPITT multispectral retrievals, 730 
J. Geophys. Res., 115, D18314, https://doi.org/10.1029/2010JD014242, 2010. 731 
 732 
Worden, H. M., Deeter, M. N., Edwards, D. P., Gille, J., Drummond, J., Emmons, L. K., Francis, 733 
G., and Martínez-Alonso, S.: 13 years of MOPITT operations: lessons from MOPITT retrieval 734 
algorithm development, Ann. Geophys., 56, 1–5, https://doi.org/10.4401/ag-6330, 2014.  735 
 736 

https://doi.org/10.5194/amt-2019-419
Preprint. Discussion started: 28 November 2019
c© Author(s) 2019. CC BY 4.0 License.



 23 

Yurganov, L. N., Duchatelet, P., Dzhola, A. V., Edwards, D. P., Hase, F., Kramer, I., Mahieu, E., 737 
Mellqvist, J., Notholt, J., Novelli, P. C., Rockmann, A., Scheel, H. E., Schneider, M., Schulz, A., 738 
Strandberg, A., Sussmann, R., Tanimoto, H., Velazco, V., Drummond, J. R., and Gille, J. C.: 739 
Increased Northern Hemispheric carbon monoxide burden in the troposphere in 2002 and 2003 740 
detected from the ground and from space, Atmos. Chem. Phys., 5, 563-573, 741 
https://doi.org/10.5194/acp-5-563-2005, 2005. 742 
 743 
 744 
  745 

https://doi.org/10.5194/amt-2019-419
Preprint. Discussion started: 28 November 2019
c© Author(s) 2019. CC BY 4.0 License.



 24 

Table 1. In-situ datasets of CO used for MOPITT products validation in this study. 746 
 747 
 748 

  749 
   750 

  Period Region Number of 
profiles 

Number of 
profiles over 

urban 
Technique Reference 

DISCOVER-AQ 
DC Jul, 2011 

Baltimore-
Washington, D.C., 

US 
80 36 NASA 

DACOM 

https://www-
air.larc.nasa.gov/missions/discover-

aq/ 

DISCOVER-AQ 
CA Jan-Feb, 2013 California, US 35 12 NASA 

DACOM 
DISCOVER-AQ 

TX Sep, 2013 Texas, US 61 37 NASA 
DACOM 

DISCOVER-AQ 
CO Jul-Aug, 2014 Colorado, US 56 36 NASA 

DACOM 

SEAC4RS Aug-Sep, 2013 US 15 1 NASA 
DACOM Toon et al. (2016) 

A-FORCE 

Mar-Apr, 
2009; Feb-Mar, 
2013; Jun-Jul, 

2013 

Japan, South 
Korea, Pacific 

Ocean 
45 2 

AL5002, 
Aero-Laser 

GmbH 

Oshima et al. (2012); Kondo et al. 
(2016) 

KORUS-AQ May-Jun, 2016 South Korea 47 6 NASA 
DACOM Al-Saadi et al. (2015) 

ARIAs May-Jun, 2016 Hebei, East China 19 3 Picarro 
G2401-i Wang et al. (2018) 
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Table 2. Summarized validation results for V7 and V8 TIR-only (V7T and V8T), NIR-only (V7N 751 
and V8N) and TIR-NIR (V7J and V8J) products based on in-situ profiles from DISCOVER-AQ, 752 
SEAC4RS, A-FORCE, KORUS-AQ, and ARIAs. 753 
 754 
 755 

 756 
  757 

    Surface 800 hPa 600 hPa 
    All Urban Non-urban All Urban Non-urban All Urban Non-urban 

V7T 
Bias (%) 0.1 -1.7 1.1 0.8 -0.6 1.7 4.0 3.9 4.0 
SD (%) 9.5 8.6 9.8 11.0 9.0 11.9 11.4 9.0 12.7 

r 0.71 0.67 0.72 0.66 0.65 0.66 0.63 0.58 0.64 

V8T 
Bias (%) 2.0 0.9 2.7 2.2 1.4 2.7 3.5 3.5 3.5 
SD (%) 9.3 9.6 9.0 10.7 9.7 11.2 11.7 10.0 12.6 

r 0.70 0.58 0.75 0.66 0.58 0.69 0.63 0.54 0.66 

V7N 
Bias (%) -2.0 -2.8 -1.5 -1.6 -2.1 -1.1 -1.6 -1.9 -1.3 
SD (%) 6.7 6.4 6.9 5.7 5.2 6.0 4.3 4.2 4.4 

r 0.62 0.54 0.67 0.56 0.45 0.61 0.61 0.48 0.68 

V8N 
Bias (%) 1.4 0.4 2.2 1.6 0.9 2.1 1.2 0.8 1.5 
SD (%) 6.9 6.7 6.9 6.0 5.8 6.1 4.6 4.7 4.5 

r 0.60 0.52 0.67 0.54 0.40 0.62 0.59 0.42 0.68 

V7J 
Bias (%) -5.4 -8.9 -3.3 -3.9 -6.5 -2.4 -0.5 -1.4 0.1 
SD (%) 13.5 12.1 13.9 14.2 12.4 15.0 13.6 11.0 14.8 

r 0.68 0.63 0.70 0.64 0.58 0.66 0.60 0.52 0.62 

V8J 
Bias (%) 0.0 -2.0 1.1 -0.7 -1.6 -0.1 -0.5 -0.8 -0.3 

SD (%) 12.7 13.7 12.0 12.9 12.5 13.1 12.8 10.9 13.8 

r 0.69 0.53 0.76 0.69 0.57 0.73 0.65 0.53 0.67 
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 758 

 759 
 760 
Figure 1. Spatial distributions of aircraft profiles from the DISCOVER-AQ, SEAC4RS, ARIAs, 761 
A-FORCE, and KORUS-AQ campaigns. Urban and built-up land cover (from MCD12C1 v006) 762 
are shown by gray shade in the boxes. Bias of MOPITT V8J comparing to the aircraft profile at 763 
the surface level are shown by the color of the profile. 764 
  765 
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 766 
 767 
 768 
Figure 2. Example of profile comparisons for an aircraft profile sampled on July 22, 2011 during 769 
DISCOVER-AQ DC. The black solid line represents the original aircraft profile and the stars 770 
represent the original aircraft observations, the black dotted line is the aircraft profile extended 771 
with CAMS reanalysis data, and regridded to 35-level grid. The in-situ profile regridded at 10-772 
level grid (𝑥4-5.4#)), the MOPITT a priori profile (𝑥&), the in-situ profile transformed with the 773 
MOPITT a priori and AK (𝑥#"&-./0"1*2), and the MOPITT retrieved profile (𝑥"#$) are shown in 774 
colored lines with dots. The purple bars centered at the 𝑥4-5.4#) at each MOPITT retrieval level 775 
show the vertical and horizontal variability of the original aircraft observations in the MOPITT 776 
layer, indicated by standard deviation. Note that each MOPITT retrieval level corresponds to a 777 
uniformly-weighted layer immediately above that level. Superimposed gray box shows the 778 
horizontal scale of the profile (each aircraft observation is represented by a red dot) and a MOPITT 779 
pixel (gray box). 780 
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 781 
 782 
Figure 3. Mean retrieval averaging kernels for the MOPITT V8J, V8T, and V8N for the 783 
corresponding in-situ profiles from the DISCOVER-AQ, SEAC4RS, ARIAs, KORUS-AQ, and A-784 
FORCE at daytime (solid lines) and nighttime (dashed lines). 785 
 786 
  787 
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 788 
 789 
 790 

 791 
Figure 4. MOPITT V8J and V8T validation results over both urban and non-urban regions at 600 792 
hPa, 800 hPa, and the surface in terms of ∆log	(VMR). The variability of the MOPITT data used 793 
to calculate each of the plotted mean values are represented by the vertical error bars. 794 
 795 
 796 
 797 
 798 

799 
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 800 
 801 
Figure 5. MOPITT V8J and V8T validation results against aircraft profiles over urban regions at 802 
600 hPa, 800 hPa, and the surface in terms of ∆log	(VMR). See caption to Figure 2. 803 
 804 
  805 
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 806 
 807 
 808 
Figure 6. Boxplot (with medians represented by middle bars, interquartile ranges between 25th 809 
and 75th percentiles represented by boxes, and the most extreme data points not considered outliers 810 
represented by whiskers) for biases (%) for the profiles over both urban and non-urban regions 811 
(yellow), profiles over urban regions (green), and profiles over non-urban regions (red) at 600 hPa 812 
(panel a), 800 hPa (panel b), and the surface (panel c). 813 
 814 
 815 
 816 
 817 
 818 
 819 
 820 
 821 
 822 
 823 
 824 
  825 

https://doi.org/10.5194/amt-2019-419
Preprint. Discussion started: 28 November 2019
c© Author(s) 2019. CC BY 4.0 License.



 32 

 826 
 827 
 828 
Figure 7. MOPITT V8J and V8T validation results at 600 hPa, 800 hPa, and the surface against 829 
the lower 50% in-situ profiles of CO and higher 50% in-situ profiles of CO. The variability of the 830 
MOPITT data used to calculate each of the plotted mean values are represented by the vertical 831 
error bars. Each panel shows the least-squares best-fit lines for the lower 50% CO concentrations 832 
(dotted line) and the higher 50% CO concentrations (dashed line). 833 
 834 
 835 
  836 
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 837 
 838 
 839 
Figure 8. Sensitivity to Pinterp. Biases (%) using 100 hPa (blue), 200 hPa (gray), 300 hPa (yellow), 840 
400 hPa (green), and 500 hPa (red) as Pinterp at 600 hPa (panel a), 800 hPa (panel b), and the surface 841 
(panel c) are shown by boxplot (with medians represented by middle bars, interquartile ranges 842 
between 25th and 75th percentiles represented by boxes, and the most extreme data points not 843 
considered outliers represented by whiskers). 844 
 845 
 846 
 847 
  848 
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 849 
 850 
Figure 9. Sensitivity to the radius as criteria for co-location. Biases (%) using 200 km (blue), 100 851 
km (gray), 50 km (green), and 25 km (pink) as the radius for co-location at 600 hPa (panel a), 800 852 
hPa (panel b), and the surface (panel c) are shown by boxplot (with medians represented by middle 853 
bars, interquartile ranges between 25th and 75th percentiles represented by boxes, and the most 854 
extreme data points not considered outliers represented by whiskers). The numbers in panel c 855 
correspond to the number of in-situ profiles qualified for validation within the given radius. 856 
 857 
 858 
  859 
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 860 
 861 
Figure 10. Sensitivity to the allowed maximum time difference as criteria for co-location. Biases 862 
(%) using 12 hour (blue), 6 hour (gray), 3 hour (green), and 1 hour (pink) as the allowed maximum 863 
time difference for co-location at 600 hPa (panel a), 800 hPa (panel b), and the surface (panel c) 864 
are shown by boxplot (with medians represented by middle bars, interquartile ranges between 25th 865 
and 75th percentiles represented by boxes, and the most extreme data points not considered outliers 866 
represented by whiskers). The numbers in panel c correspond to the number of in-situ profiles 867 
qualified for validation within the given allowed maximum time difference. 868 
 869 
 870 
 871 
 872 
 873 
 874 
  875 
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 876 
 877 
 878 
Figure 11. Sensitivity to the signal-to-noise ratio (SNR) filters. Biases (%) for MOPITT retrievals 879 
without SNR filters (gray), and MOPITT retrievals with SNR filters (green) at 600 hPa (panel a), 880 
800 hPa (panel b), and the surface (panel c) are shown by boxplot (with medians represented by 881 
middle bars, interquartile ranges between 25th and 75th percentiles represented by boxes, and the 882 
most extreme data points not considered outliers represented by whiskers). The numbers in panel 883 
c correspond to the number of in-situ profiles qualified for validation without or with SNR filters. 884 
 885 
 886 
 887 
 888 
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